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Lecture Note 9: Online Machine Learning Algorithm 

Problem Definition 

We are working on stock day trade and we are focusing on a particular stock GOOG. On every day in 

the morning, we will make a decision to buy or not to buy the stock, but, if we buy it, we will sale it in 

the evening. If we buy and the stock price gets higher on the day, we will receive a profit. 

Suppose that we do this day trade repetitively for 𝑇 days. We receive opinions from 𝑛 stock 

experts in the morning of every day. The experts advise us to buy and not to buy GOOG on each day. 

The opinions on day 𝑡 are denoted by 𝑥1
(𝑡)

, 𝑥2
(𝑡)

, … , 𝑥𝑛
(𝑡)

∈ {buy, no buy}. We say that expert 𝑖 give us a 

correct opinion on day 𝑡, if 𝑥𝑖
(𝑡)

= buy and the stock price go up on the day, or if 𝑥𝑖
(𝑡)

= no − buy and 

the stock price go down on day 𝑡. Otherwise, we will say that the expert give us an incorrect opinion. 

The opinions can be correct or incorrect based on how good each expert knows about GOOG, 

but we do not know who the best expert is on day 1. However, based on the experts’ performances on 

earlier day, we want to find a set of good experts and follow them. 

The problem definition can be stated as follows: 

Input:   For all 𝑡 ∈ {1, … , 𝑇}, 𝑥1
(𝑡)

, 𝑥2
(𝑡)

, … , 𝑥𝑛
(𝑡)

∈ {buy, no buy}, 𝑟(𝑡) ∈ {up, down} 

Output:   Our decision 𝑑
(𝑡)

∈ {buy, no buy} 

Constraint:  𝑑(𝑡′) is calculated only for 𝑥1
(𝑡)

, … . , 𝑥𝑛
(𝑡)

 for 𝑡 ≤ 𝑡′ and 𝑟(𝑡) for 𝑡 < 𝑡′ 

Objective Function: Denote 𝑝(𝑡) = {
1 if 𝑑(𝑡) = buy  𝑎𝑛𝑑 𝑟(𝑡) = 𝑢𝑝,

1
0

 if 𝑑(𝑡) = no buy 𝑎𝑛𝑑 𝑟(𝑡) = 𝑑𝑜𝑤𝑛
otherwise

. 

   Maximize ∑ 𝑝(𝑡)
𝑡  

 It is important to note that to make a decision at time 𝑡, denoted by 𝑑(𝑡), we will know the 

expert advices 𝑥1
(𝑡)

, 𝑥2
(𝑡)

, … , 𝑥𝑛
(𝑡)

 but not the result 𝑟(𝑡). If we know 𝑟(𝑡), this problem would be very 

easy. 

Algorithm 

The algorithm for the online problem, called as halving algorithm, is as follows: 

1: For all 1 ≤ 𝑖 ≤ 𝑛, 𝑤𝑖 = 1. 

2: For 𝑡 = 1 to 𝑇: 

3: If ∑ 𝑤𝑖𝑖:𝑥𝑖
(𝑡)

=buy
≥ ∑ 𝑤𝑖𝑖:𝑥𝑖

(𝑡)
=no buy

: 

4:  𝑟(𝑡) = buy 
5: Else: 

6:  𝑟(𝑡) = no buy 

7: For all expert 𝑖 that makes a wrong suggestion, 𝑤𝑖 ← 𝑤𝑖/2 

The weight 𝑤𝑖 shows how much we believe in the expert 𝑖. At the beginning, we set the weight for all 

experts to 1, which indicates that we believe in all experts equally. Then, in the evening of every days, 

we will check if a particular experts make a wrong suggestion, and reduce the weight of those who 

make wrong suggestion by half if Line 7 of the algorithm. 



 We make a decision 𝑟(𝑡) based on the condition in Line 3. There, we calculate the sum of 

weights for experts who suggest buying the stock, compare it to the sum of weights for experts who do 

not suggest, and we buy the stock when the first weight sum is larger than the second. 

Example 

Suppose that 𝑛 = 3 and 𝑇 = 3. The halving algorithm works as in the following table: 

Time Expert 1 Expert 2 Expert 3 Our Decision 

1 Suggestion: Buy 

𝑤1 = 1 

Suggestion: No Buy 

𝑤2 = 1 

Suggestion: No Buy 

𝑤3 = 1 

Sum weight for buy 

  = 1 

Sum Weight for no buy 

  = 1 + 1 = 2 

Decision: no buy 

 

Wrong Decision   

2 Suggestion: No Buy 

𝑤1 = 1 

Suggestion: Buy 

𝑤2 = 0.5 

Suggestion: No Buy 

𝑤3 = 0.5 

Sum weight for buy 

 = 0.5 

Sum Weight for no buy 

 = 1 + 0.5 = 1.5 

Decision: no buy 

 

Right Decision 

3 Suggestion: Buy 

𝑤1 = 1 

Suggestion: No Buy 

𝑤2 = 0.5 

Suggestion: No Buy 

𝑤3 = 0.25 

Sum weight for buy 

 = 1 

Sum weight for no buy 

 = 0.5 + 0.25 = 0.75 

Decision: buy 

 

 Right Decision 

  

Theory 

We can prove the following theory for the algorithm. 

Theorem 1: Let 𝑚 be the number of mistakes by the best expert, i.e.  

𝑚 ≔ min
𝑖

(number of mistakes by expert 𝑖). 

Then, the number of incorrect decisions obtained by the algorithm is at most 2.41(𝑚 + lg2 𝑛). 

Proof: As a weight of an expert is reduced by half after one mistake and the best expert makes a mistake 

for 𝑚 times, we know that, at the end of all investments, the weight of the best person is 1/2𝑚.  

Denote the sum of all of the expert weights ∑ 𝑤𝑖𝑖  after the 𝑡th iteration as 𝑊𝑡. We know that 

𝑊𝑇 ≥ 1/2𝑚 because the weight sum must include the value is a weight of the best expert after the 𝑇th 

iteration, which is 1/2𝑚. 

Next, let us find a relationship of 𝑊𝑡 and 𝑊𝑡+1 when we make an incorrect decision. We know 

that  

𝑊𝑡 = (sum of weight with correct suggestion 𝐶𝑡) + (sum of weight with incorrect suggestion 𝐼𝑡). 

  



We will make an incorrect decision when 𝐼𝑡 ≥ 𝐶𝑡, which means that 𝐼𝑡 ≥ 𝑊𝑡/2. At Step 7 of 

the algorithm, we will reduce the weight of all experts who make an incorrect suggestion by half. That 

results in reducing the sum of all the weights 𝐼𝑡 by half. Hence, we will have 

𝑊𝑡+1 = 𝐶𝑡 +
𝐼𝑡

2
= (𝐶𝑡 + 𝐼𝑡) −

𝐼𝑡

2
= 𝑊𝑡 −

𝐼𝑡

2
≤ 𝑊𝑡 − (

𝑊𝑡

2
)/2 =

3

4
𝑊𝑡 . 

The weight sum 𝑊𝑡  will be cut by at least 25% for each incorrect decision. As all 𝑤𝑖 = 1 at the 

beginning of the algorithm, the weight sum at the beginning 𝑊0 is 𝑛. Suppose that we make 𝑀 incorrect 

decisions. That weight sum will be reduced by at least 25% for at most 𝑀 times. At the end of the 

algorithm, the weight sum 𝑊𝑇 ≤ (
3

4
)

𝑀
𝑛. As discussed at the beginning of this proof, we have 𝑊𝑇 ≥

1/2𝑚. We know that 

(
3

4
)

𝑀

𝑛 ≥ 𝑊𝑡 ≥
1

2𝑚
 

lg2 [(
3

4
)

𝑀

𝑛] ≥ lg2 (
1

2𝑚
)  

lg2 [(
3

4
)

𝑀

] + lg2𝑛 ≥ −𝑚 

𝑀 lg2 0.75 + lg2 𝑛 ≥ −𝑚 

−0.415𝑀 + lg2 𝑛 ≥ −𝑚 

𝑚 + lg2 𝑛 ≥ 0.415𝑀 

𝑀 ≤ 2.41(𝑚 + lg2 𝑛) 

 

The best expert in our example is Expert 1, who does not make any mistake in her suggestion. 

We have 𝑚 = 0 . Then, 2.41(𝑚 + lg2 𝑛) = 2.41(0 + lg2 3) = 3.82 . As we make one incorrect 

decision in the example, the number of incorrect decisions is smaller than the upper bound given in the 

theorem. 

Using Randomization 

We have ever used a randomized algorithm in the randomized rounding scheme earlier in this course. 

In this section, we introduce that randomized algorithm to give a good performance in the online 

problem. 

 Let us consider the following algorithm: 

1: For all 1 ≤ 𝑖 ≤ 𝑛, 𝑤𝑖 = 1. 

2: For 𝑡 = 1 to 𝑇: 

3: 𝑊buy ← ∑ 𝑤𝑖𝑖:𝑥𝑖
(𝑡)

=buy
: 

4: 𝑊no buy ← ∑ 𝑤𝑖𝑖:𝑥𝑖
(𝑡)

=no buy
 

5: 𝑑(𝑡) ← buy with probability 𝑃buy ≔ 𝑊buy/(𝑊buy + 𝑊no buy) 

      𝑑(𝑡) ← no buy with probability 1 − 𝑃buy 

6: For all expert 𝑖 that makes a wrong suggestion, 𝑤𝑖 ← 𝑤𝑖/2 



Instead of always choosing the choice with a larger weight sum, we will choose to buy the stock with a 

probability depending the two weight sums. If 𝑊buy is much larger than 𝑊no buy, we will likely to buy 

the stock. On the other hand, we will not likely to buy if 𝑊no buy is much larger than 𝑊buy. 

 We will have the following theorem for the randomized algorithm. 

Theorem 2: The expected number of incorrect decisions is no larger than 1.39𝑚 + 2 ln 𝑛. 

Proof: Let 𝐹(𝑡) be a probability that we make an incorrect decision at time 𝑡. The expected number of 

incorrect decisions is then equal to ∑ 𝐹(𝑡)
𝑡 . 

 We will again consider a sum of all weights 𝑊(𝑡). Recall that 𝑊(0) = 𝑛 and 𝑊(𝑡) = 𝐶(𝑡) +

𝐼(𝑡) when 𝐶(𝑡) is the weight sum of experts who give a correct suggestion and 𝐼(𝑡) is the sum of the 

weight of experts who give an incorrect suggestion. By that, we have 𝐹(𝑡) =
𝐼(𝑡)

𝐶(𝑡)+𝐼(𝑡) =
𝐼(𝑡)

𝑊(𝑡) and  

𝑊(𝑡+1) = 𝐶(𝑡) +
𝐼(𝑡)

2
= 𝑊(𝑡) −

𝐼(𝑡)

2
= 𝑊(𝑡) [1 −

1

2

𝐼(𝑡)

𝑊(𝑡)
] = 𝑊(𝑡) [1 −

𝐹(𝑡)

2
].  

We then have 

𝑊(𝑇) = 𝑊(0) ∏ [1 −
𝐹(𝑡)

2
]

𝑡

= 𝑛 ∏ [1 −
𝐹(𝑡)

2
]

𝑡

. 

We know from the previous proof that 𝑊(𝑇) ≥ 1/2𝑚. Hence, 

𝑛 ∏ [1 −
𝐹(𝑡)

2
]

𝑡

≥
1

2𝑚
. 

As 1 − 𝑥 ≤ 𝑒−𝑥, we have 

1

2𝑚
≤  𝑛 ∏ [1 −

𝐹(𝑡)

2
]

𝑡

≤ 𝑛 ⋅ 𝑒−
1
2

∑ 𝐹(𝑡)
𝑡  

ln 2−𝑚 ≤ ln (𝑛 ⋅ 𝑒−
1
2

∑ 𝐹(𝑡)
𝑡 ) 

−𝑚 ln 2 ≤ ln 𝑛 + ln 𝑒−
1
2

∑ 𝐹(𝑡)
𝑡  

−0.693𝑚 ≤ ln 𝑛 −
1

2
∑ 𝐹(𝑡)

𝑡

 

1

2
∑ 𝐹(𝑡)

𝑡

≤ 0.693𝑚 + ln 𝑛 

∑ 𝐹(𝑡)

𝑡

≤ 1.39𝑚 + 2 ln 𝑛. 

 

 The bound in Theorem 2, 1.39𝑚 + 2 ln 𝑛, is smaller than the bound in Theorem 1, 2.41𝑚 +

2.41 lg2 𝑛. However, we cannot say from here that the randomized algorithm has a better performance 

than the first algorithm. Theorem 2 is a bound for the expected value, which is an average performance 



after we run the algorithm for 1,000,000 times. In the worst case, we might get a performance that is 

worse than that from Algorithm 1.  

Crowdsourcing 

Let us consider the application of the above algorithm on crowdsourcing. In any matching learning, we 

always want to find a function 𝑓 that can capture a thing that we want to learn about. To find a good 

function 𝑓, we have to give a large number of inputs and outputs to train machine learning algorithms. 

For example, we may want to find a function 𝑓 that takes an image an input and gives an answer if the 

image contains cancer cells.  

It is usually not very hard to find training inputs as there are a lot of images from patience. 

More hospitals and government units are publishing the data. However, it is not very easy to find 

training outputs as that information is not always published. We may have to find some medical doctors 

who are good in cancer analysis. The cost for that may be too large to effort. Instead of one expert who 

are expensive, it might be more reasonable to have a lot of people voting for a correct answer. That is 

called as crowdsourcing. 

It is always a problem how to motivate people who give us outputs, called as workers, to give 

us a precise answer as much as we can. If we give the same incentive for all outputs given, workers 

might give us random outputs. Because of that, it is very important to have a way to evaluate each 

worker, believe workers who know give us precise outputs, and give less incentive to workers who give 

us random outputs.  

We can solve that using the algorithms provided in this lecture note. We will have experts 

provide gold standard for a very few outputs. Then, we randomly insert inputs with outputs from experts. 

Without informing workers which inputs we have the gold standard outputs, we will have the workers 

give us all the outputs, compare them with the gold standard, and evaluate each worker by the 

comparison results. 

We can use the weighted majority voting (Line 3 of the first algorithm) to combine outputs 

suggested from workers. Also, we can reduce the weight of workers that give us an incorrect 

information by half as in Line 7 of the first algorithm. The payment for each worker can depend on 

his/her weight. Although we still do not have a good theoretical analysis on this idea, it is shown in [2] 

that it gives a fair performance. 
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